If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-36x+26=0
a = 8; b = -36; c = +26;
Δ = b2-4ac
Δ = -362-4·8·26
Δ = 464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{464}=\sqrt{16*29}=\sqrt{16}*\sqrt{29}=4\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{29}}{2*8}=\frac{36-4\sqrt{29}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{29}}{2*8}=\frac{36+4\sqrt{29}}{16} $
| 9=2(5z+4)+6 | | X+10x÷100=22000 | | 50+n=150 | | 5-9x=-96 | | 9x-9+108=180 | | 5-(4x+3)=7-2(5-3x) | | 4^x-5=3 | | 3250-65x=4550-130x | | 21+5c=51 | | y=50(0.2)^3 | | 2k+2k=−10 | | 8(d+3)=64 | | y=50(0.2)^2 | | 4(q+2)-3q=-8 | | 7(x-2)=3x-12 | | 12-8x+4=2x-5-3x | | x+8x=126 | | P(6)=4x^2+6+x-6 | | 5(p-3)-4p=-10 | | 200=5(-7x-16) | | 1/5y=32 | | 4(2-x)+1=2x+2-5(1 | | 4x-15=2(2x+5) | | 150-x-2x=120-2x | | -9(6x-3)=-243 | | 1x*0.07=192-x | | 3+8x-10=7x+20= | | y,7=40 | | 9x4=36 | | P(2)=4x^2+6+x-6 | | 1x*0.07=192 | | 4x-6=8x×8 |